From JD to Data Science: A Case Study in AI and Law | Zac Kriegman, Thomson Reuters

Date: 

Wednesday, February 12, 2020, 5:00pm to 6:30pm

Location: 

Harvard University, Wasserstein Hall, 1585 Massachusetts Ave, Millstein West B, Cambridge MA
Please join the HDSI and the Berkman Klein Center for Internet and Society for a talk by Zac Kriegman of Thomson Reuters. Registration required.

Abstract: Thomson Reuters Westlaw has long integrated machine learning and AI into its product offerings. However, in the last few years, deep neural networks have been responsible for a sea change in NLP capabilities, making possible what, until recently, would have been considered science fiction. Zac Kriegman will describe his path from a Harvard JD to a data science career focused on deep learning, and demonstrate a case study illustrating how some of these new techniques were applied to a legal annotation task to produce legal summaries on par with human annotators, allowing Thomson Reuters to improve quality, expand coverage and reduce costs.

Bio: Zac Kriegman is a Director of Data Science in Thomson Reuters Labs where he heads the Deep Learning Team that is building neural networks to understand, analyze, and generate legal language by training on Thomson Reuters’ vast repositories of legal, tax and news data. Before heading the Deep Learning Team, Zac co-created Thomson Reuters' Singapore Lab focused on developing novel financial applications with international banking customers. Prior to starting his Data Science career at Thomson Reuters, he was an economist doing econometric analysis for high stakes anti-trust litigation, a business lawyer at a top national law firm, and a software engineer at a Boston area startup (not all at the same time). He holds a B.A. in Economics from the University of Michigan and a J.D. from Harvard Law School.

This is a joint seminar with Berkman Klein Center for Internet and Society.

The HDSI Data Science in Industry seminar series provides the opportunity for Harvard students, faculty and postdocs to hear directly from industry data scientists about the role data science plays in their organization, the methods and techniques being used, and their own career trajectory. Speakers are invited from companies spanning a broad range of sectors, including finance, tech, sports, pharma and media. Each talk typically lasts around 45 minutes, followed by 45 minutes for Q&A with the speaker.